## **C.U.SHAH UNIVERSITY** Summer Examination-2017

## Subject Name : Structural Design-I Subject Code :4TE07STD1

Semester : 7 Date : 21/03/2017 **Branch : B.Tech (Civil)** Time : 02:30 To 05:30

Marks:70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.
- (5) IS 800:2007, IS 456:200, Steel Table and Sp-16 are allowed during the examination.

## Q-1 Attempt the following questions:

(14)

1

1

1

- Calculate the moment of resistant of the flange of T-Beam Having the size of 1 a) flange 150cm  $\times$  15 cm & web Size is 30 cm  $\times$  55 cm. if the characteristics strength of concrete is 15 N/mm<sup>2</sup>.
- The maximum compression strain in concrete in axial compression is taken b) 1 as
- What percentage of the aggregates in contained in hardened mass of concrete? **c**)
- Write the Name of most important factor that affect the strength of a concrete. **d**)
- If the concrete characteristics Strength value is 55 N/mm<sup>2</sup>, find its splitting **e**) strength of concrete.
- If  $f_v$  is the characteristics strength of steel and  $E_s$  = is the modulus of elasticity, the f) 1 strain in the tension reinforcement in the section at failure equals to
- The Permissible stress to which a structural member can be subjected to, is 1 g) known as

(i) Working stress (ii) tensile stress (iii) bearing Stress (iv) (ii) & (iii) both

- Allowable Working stress corresponding to the slenderness ratio of double angles 1 h) placed back to back and connected to one side of gusset plate, how much percentages can be reduced?
- The minimum pitch i.e., the distance between centers of rivet holes is not less **i**) than
- Give the Range between the angle of inclination of lacing bars with axis of the j) member.
- Why distribution steel is provided in RC Structure? 1 k) What is Development length? 1 D **m**) Give the minimum thickness in fillet weld. 1 Give the value of slenderness ratio for the tension member in which a reversal of n) 1
- direct stress occurs due to loads other than wind or seismic forces.



Page 1 || 3

| Q-2        |            | Attempt all questions                                                                               | (14) |
|------------|------------|-----------------------------------------------------------------------------------------------------|------|
|            | a)         | A drawing room of a residential building measures $4.3m \times 6.55$ m. It is supported             | 14   |
|            |            | on 350 mm thick walls on all four sides. The slab is simply supported at edges                      |      |
|            |            | with no provision to resist torsion at corners. Design the slab using grade M-20                    |      |
|            |            | concrete and HYSD bar of Fe-415.                                                                    |      |
| Q-3        |            | Attempt all questions                                                                               | (14) |
|            | a)         | Design a simply supported steel beam of span 7m carrying R.C.C slab capable of                      | 14   |
|            |            | providing lateral restraint to the top compression flange. The beam is subjected to                 |      |
|            |            | total u.d.l of 100 kN dead load excluding self weight plus 150kN imposed load.                      |      |
|            |            | In addition, the beam carries a point load at mid span made up 50kN dead load                       |      |
|            |            | and 50 kN imposed load.                                                                             |      |
| <b>O-4</b> |            | Attempt all questions                                                                               | (14) |
| -          | a)         | Calculate the moment carrying capacity of a 3m long ISMB 350 beam which has                         | 7    |
|            | ,          | full torsional restraint and no warping restraint at ends only.                                     |      |
|            | <b>b</b> ) | A Short R.C.C. column is to carry a factored load of 1900 kN. If the column is to                   | 7    |
|            | ,          | be a square, design the column. Assume Minimum eccentricity is less than 0.05D.                     |      |
|            |            | use M20 grade of concrete and Fe-250 grade of steel.                                                |      |
| 0-5        |            | Attempt all questions                                                                               | (14) |
| C          | a)         | Calculate the compressive strength of a single angle strut ISA $100 \times 75 \times 10$ mm         | 7    |
|            | ,          | with centre to centre length of 1.5 m. Angle is loaded through one leg and ends                     |      |
|            |            | are fixed. Consider 1 bolt at the each end. Take $f_v = 250$ MPa.                                   |      |
|            | <b>b</b> ) | Determine area of tension reinforcement for T-beam to resist factored moment                        | 7    |
|            | ,          | 300 kN.m. use M-20 and Fe-415 Steel.                                                                |      |
|            |            | Flange Dimension = $1400 \times 100$ mm.                                                            |      |
|            |            | width of web = $300 \text{ mm}$                                                                     |      |
|            |            | Effective Depth = $700 \text{ mm}$ .                                                                |      |
| <b>O-6</b> |            | Attempt all questions                                                                               | (14) |
| C          | a)         | An angle section $90 \times 90 \times 8$ mm is to be connected to gusset plate by 6 mm fillet       | 7    |
|            | /          | weld on sides and at the end of the member. The member is carrying tensile load                     |      |
|            |            | of 120 kN. Design the welded connection. Assume Steel grade Fe 410 and fillet                       |      |
|            |            | welding.                                                                                            |      |
|            | <b>b</b> ) | A singly RC beam 250mm $\times$ 500 mm is reinforced with 3 Nos . 20mm diameter                     | 7    |
|            | ,          | bars at an effective cover of 30mm. Effective span of the beam is 4m. Find                          |      |
|            |            | allowable superimposed load on the beam.                                                            |      |
| 0-7        |            | Attempt all questions                                                                               | (14) |
| Ľ          | a)         | An RCC Column of size 350 mm $\times$ 350 mm reinforced with 8 no.16 mm                             | 10   |
|            | ,          | diameter carries a characteristic load of 800 kN. The allowable bearing pressure                    |      |
|            |            | on soil is 200 kN/m <sup>2</sup> . Design an isolated square pad footing. Use M20 and Fe 415        |      |
|            |            | for both the column and footing.                                                                    |      |
|            | <b>b</b> ) | Explain the Limit state of Collapse in Flexure.                                                     | 4    |
| <b>O-8</b> | - /        | Attempt all questions                                                                               | (14) |
| •          | a)         | 30kN/m u.d.l. is acting on a two sapn continuous beam. Each support is simply                       | 7    |
|            | ,          | supported. Design the beam using plastic method. Take $fv = 250 \text{ N/mm}^2$ .                   |      |
|            | b)         | A simply supported rectangular beam of size $250 \text{mm} \times 500 \text{mm}$ effective depth is | 7    |
|            | ÷          | reinforced with 4-18mm diameter M.S bars as tension reinforcement beam is                           |      |

## Page 2 || 3



subjected to factored shear force of 160 kN at support. Design the shear reinforcement with two bent up bars at  $45^{\circ}$  from steel and 8mm diameter M.S stirrups grade of concrete M-20.



